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Deissler,:L in a study of wesk, homogeneous turbulence in a uniform
shear flow, reported calculations of several components of the fluctuating
velocity correlation E;EE and the corresponding Fourier transform Qij
for the case of initially isotropic turbulence. Triple correlations in
the analysis of weak turbulence were neglected compared to double correla-

tions.

The remaining components of the velocity correlastion are presented

herein to enable a complete description of the redistribution of turbulent

energy uj;u; among its directlonal components u%, u%, and u% by the

effects of the mean-velocity gradient a = dUl/dx2 as the turbulence de~

cays. This information supplements recent reports of pressure fluctuations2

3

and temperature-gradient effects” in shear flows.

Analysis from reference 1 that relates to the present results is out-
lined gs follows for later discussion. In wave-number space, the transform

of the two-point velocity correlation wu.u! satisfies (Eq. (34) of ref. 1)
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1R. G. Deiesler, Phys. Fluids, 4, 1187 (1961).
2R. G. Deissler, Phys. Fluids, 5, 1124 (1962).
5R. G. Deissler, Int. J. Heat Mass Transfer, 6, 257 (1963).
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where ®;; is 1 for i =J and Ofor 1 #J, and

uiuj = / P 3 exp(ik - 7)dX. (2)
-00

A scalar dependence on K 1is substituted for the vector dependence

of P 4 on ¥ by integration over a sphere of rasdius «,

gt = [ oy Raad). ()

Similar integration of the terms of Eq. (1) ylelds

d duq aly 3dUl o
T TP E, T, T W E, T B (4)

Where Pij(dUl/dxz) represents production of turbulent energy by the action
of the mean velocity gradient, and the last term provides viscous dissipa-
tion. Alteration of distributions in wave-number space is effected by
Tij(dUl/dxz), but no contributions to 55;53/8t result for the case of
T =0 that is considered here. A zero pressure-force term occurs in the
contracted equation; that is, Qii(dUl/dXZ) = 0 where summation is indi-
cated by the repeated index. Thus, the pressure-force terms Qij can be
interpreted as exchanging energy between the directional components of
energy but contributing nothing to dV;;/dt.

A solution to Eq. (1), in addition to @oo, G1, and ¢;; from ref-
erence 1, that satisfies an isotropic initial condition,

(cpij)o = (JO/lZnZ)(KZSiJ- - Kin), (5)

is
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An explicit form for ¢zz 1s not shown here since it can be obtained by

subtraction as
Pzz = P53 " P11 T Pee- (7)
Solutions for 1z and OQoz, although nonzero, are omitted since the

corresponding velocity correlations Upuz and Usuz are zero, which



seems physically reasonable from the lack of velocity gradients in the
X1, Xz and Xp, xz Dplanes. It is interesting that ¢,z and Yoz are
also zero so that a zero average of ¢;z and @pz 1is obtained over
every sphere of radius K.

u% are displayed in Figs.
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and
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Dimensionless spectra of

1l and 2 in a temporally invariant representation. By far the largest

component of the energy-spectrum function % Vi; = E, as gshown in Fig. 1,
is formed by % V11 &t large velocity gradients. Energy production, the

apparent cause of this effect, occurs only in the wll equation [second
and third terms in Eq. (1)] and outweighs the transfer of energy between
components by the pressure forces. An interpretation of these terms as
production of energy is aided by changing to negative the sign of the
spectrum of E;ﬁg that appears in Fig. 6 of reference 1 so that agree-

ment with Fig. 9 of reference 1 and the usual convention is attained.

2

The reshaping of the spectral distribution of 3 at large velocity

gradients is shown in Fig. 2 by the dashed-line distribution corresponding
to zero velocity gradient but normalized to the peak of a large velocity-
gradient distribution.

On Fig. 3, Qll is shown to be always negative, indicating that

2

1 at all wave

pressure forces transfer energy out of the spectrum of u
numbers; conversely, Qzz 1is positive, indicating that energy is trans-

ferred into the spectrum ug. On the other hand, sz is negative at
high wave mumbers but positive gt low wave numbers in varying proportions,

so that the net contribution to éag/at is positive at small velocity
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gradients but is negative at large gradients. Most of the energy trans-

fer at high velocity gradients by the pressure terms is from the spectrum

of u% into the spectrum of u%; smaller transfer is effected by sz.
Curves of u% and u% that are shown in Fig. 4 were obtained by

integrating the spectrsl distributions of Figs. 1 and 2. A curve for

Eg is reproduced from reference 1. As anticipated from the spectral
results, u%

i1ty gradient. From the spectral distributions, as well as Fig. 4, pres-

as a fraction of u,u, rises rapidly with increasing veloc-
sure forces are shown to transfer more energy into ug than u% at high

velocity gradients, but a reverse effect at low gradients is also shown

in Fig. 4 where ug is greater than ug.

- 1l/2
The shear correlation coefficient ulu%/(uﬁu%) / that is displayed

in Fig. 4 is analogous to the heat-transfer correlation coefficient that
was introduced by Corrsin® and, for shear flows, was calculated by
Deissler.3 After a rapid rise from the expected zero value for no-
veloclty gradient, the shear coefficient is‘remarkably constant over a

wide range of gradients.

43, Corrsin, J. Appl. Phys., 23, 113 (1952).



-8 -

CAPTIONS
Fig. 1 - Dimensionless spectra of % u% and usuy .
Fig. 2 - Dimensionless spectra of %-ug. — — — curve for dUl/dxz =0

normalized at the peak to the curve for dUl/dxz = 20.

Fig. 3 - Spectral pressure-force terms from Eq. (4).

Fig. 4 - Velocity correlation ratios as a function of dimensionless
velocity gradient.
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Fiz. 2 Dimensicnless spectra of % U%, —— curve for A4U /dxe =0

normalized at the peak to the curve for dUy/dxp = 20.
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Fig. 3 Spectral pressure-force terms from Eq. (4).
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Fig. 4 Veloclty correlation ratios as a function of dimensionless
velocity gradlent.
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